Differentiation of osteoprogenitor cells is induced by high-frequency pulsed electromagnetic fields.
نویسندگان
چکیده
UNLABELLED Craniofacial defect repair is often limited by a finite supply of available autologous tissue (ie, bone) and less than ideal alternatives. Therefore, other methods to produce bony healing must be explored. Several studies have demonstrated that low-frequency pulsed electromagnetic field (PEMF) stimulation (ie, 5-30 Hz) of osteoblasts enhances bone formation. The current study was designed to investigate whether a Food and Drug Administration-approved, high-frequency PEMF-emitting device is capable of inducing osteogenic differentiation of osteoprogenitor cells. Osteoprogenitor cells (commercially available C3H10T1/2 and mouse calvarial) in complete Dulbecco modified Eagle medium were continuously exposed to PEMF stimulation delivered by the ActiPatch at a frequency of 27.1 MHz. Markers of cellular proliferation and early, intermediate, and terminal osteogenic differentiation were measured and compared with unstimulated controls. All experiments were performed in triplicate. High-frequency PEMF stimulation increases alkaline phosphatase activity in both cell lines. In addition, high-frequency PEMF stimulation augments osteopontin and osteocalcin expression as well as mineral nodule formation in C3H10T1/2 cells, indicating late and terminal osteogenic differentiation, respectively. Cellular proliferation, however, was unaffected by high-frequency PEMF stimulation. Mechanistically, high-frequency PEMF-stimulated osteogenic differentiation is associated with elevated mRNA expression levels of osteogenic bone morphogenetic proteins in C3H10T1/2 cells. Our findings suggest that high-frequency PEMF stimulation of osteoprogenitor cells may be explored as an effective tissue engineering strategy to treat critical-size osseous defects of the craniofacial and axial skeleton. ABBREVIATIONS ALP, alkaline phosphatase; BMP, bone morphogenetic protein; ERK-1, extracellular signal-regulated kinase 1; iCALs, immortalized calvarial cells; IHC, immunohistochemical; MAP, mitogen-activated protein; MSC, mesenchymal stem cell; OCN, osteocalcin; OPN, osteopontin; p38α, p38-reactivating kinase; PBS, phosphate-buffered saline; PEMF, pulsed electromagnetic field.
منابع مشابه
Author's response to reviews Title: Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in-vitro study Authors:
متن کامل
Extremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells
Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...
متن کاملPulsed electromagnetic field attenuated PTSD-induced failure of conditioned fear extinction
Objective(s): This study aimed to determine whether exposure to pulsed electromagnetic field (PEMF) can impair behavioral failure as induced by PTSD, and also its possible effects on hippocampal neurogenesis. PEMF was used as a non-invasive therapeutic tool in psychiatry.Materials and Methods: Male rats were divided into Control-Sham exp...
متن کاملPulsed electromagnetic field at frequency and intensity resembling potassium ion cyclotron resonance selectively impairs breast cancer cell through apoptosis
Introduction: Breast cancer (BC) is the most common women cancer worldwide. Radiotherapy and chemotherapy are the two common treatment options but these techniques suffer low selectivity and adverse effects on surrounding normal tissues. Non- ionizing pulsed electromagnetic fields (PEMFs) in ultra-narrow band frequency and intensity have shown anticancer effects. Changing potas...
متن کاملDesign and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results
Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicates that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coil is a device that generates pulsed electromagnetic fields. Objective: In this study, a pair of Helmholtz coils for enhancing thehealing process in periodontitis w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of craniofacial surgery
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2012